CRAY T3E and SGI Origin2000:
Merging Architectures
from the User’s Point of View

Stephan Seidl and Wolfgang E. Nagel

Center for High Performance Computing (ZHR)
Dresden University of Technology
D-01062 Dresden, Germany
E-mail: {seidl|nagel}@zhr.tu-dresden.de

Abstract

While the T3E is very well established as a highly parallel machine in many compute intensive
environments, large Origin2000 sites still have to optimize their usage profile to get effective
cycles for parallel codes even for moderate numbers of processors. The paper compares T3E
and Origin2000 systems, highlighting some details with respect to parallel programming and
runtime behavior of appropriate applications. The goal is not to favor one system over
the other, but to give recommendations how to design applications which are able to run
efficiently on both architectures.

Users are mainly faced with two differences between both systems. First, on a T3E a parallel
application is statically parallel from the beginning. In case of the Origin2000, an application
gets parallel during execution time when the user has control. Second, once started on a T3E,
a parallel application is always running as fast as possible. On an Origin2000, this does only
happen under certain circumstances. The paper will give some background about these facts
and will demonstrate the strong dependence of the runtime behavior of parallel programs on
different runtime situations. Comparative performance illustrations of both machines will
color the overall picture of the merging worlds.

1 Introduction

A few months ago, Dresden University of Technology (TU Dresden) has ordered a SGI/CRAY
SN-1 machine. The system will be shipped in the second half of 1999. Part of the contract
is to deliver a T3E beforehand. Since this will be a 300 MHz model, a lot of measurements
have not only been done for the T3E-900. On the other hand, the TU Dresden is the largest
German Origin2000 site with, over all, 56 MIPS R10k processors, 18 GBytes memory, about
300 GBytes disks, and, of course, a 21-monthed exciting story of run.

With release 6.5, the IRIX operating system comes now with a version of Miser which can
also handle MPI-parallelized jobs. This means that now the task scheduler holds certain
information which allow to recognize the tasks of a MPI-parallelized application as a group
which is to be served as an entirety. In fact, this is very encouraging because all the prerequi-
sites are finally fulfilled to run MPI-based parallel applications efficiently under normal batch
conditions, too. The merged machine of the future will have essential characteristics of the
Origin2000 concept. Nevertheless, the IRIX operating system is to be gained upon the level
a user sees on a T3E, but, of course, without loosing the flexibility of an Origin2000.

On a T3E, there is no fight for resources while a job is running on the application nodes, except
for pushing a packet through the connecting wires. On the Origin2000 and its successors,
respectively, this should also be true in case of Miser-controlled jobs. All the other load
coming from interactive requests should further fight for processors etc. Clearly, things like
Miser seem to be the right way here to dynamically ‘partition’ the S2MP architecture into a
critical batch job part with high priorities under strict resource control, and a remaining part
with an UNIX-like resource management.

What remains is a question which should be answered by the vendor. What does Miser do in
case of an application which performs ordinary fork() system calls, or, what is done in case
of PVM? Early investigations have shown that so far only the parent process gets the ‘batch
critical’ attribute.

2 Architecture Overview

A T3E can have up to 2048 processors over a 3D torus interconnect. The 3D torus links
have a raw bandwidth of 600 MBytes/s in each direction. One node of the system consists
of an Alpha microprocessor, a system control chip, local memory, and a network router. The
system logic runs at 75 MHz, and the processor runs with a multiple of this, i.e. at 300
MHz for the T3E which is called T3E-600 in this paper, at 450 MHz for the T3E-900, or
at 600 MHz for the T3E-1200 (delivered at a few sites in Germany over the last few weeks).
The latter has not been taken into account here. The Alpha processor is capable to do one
floating-point add and one floating-point multiply at the same time. Each processor contains
an 8 KBytes direct-mapped primary cache, an 8 KBytes instruction cache, and a 96 KBytes
unified three-way associative second-level cache. Instead of a large, board-level cache, there
is a small set of stream buffers to improve the access to stride-1 or small-stride vectors by
prefetching. The remote communication and synchronization is done between a large set of
so-called E-registers and the memory.

An Origin2000 can have up to 128 processors where up to 4 eight-vertex hypercubes are con-
nected with each other. One node board of the system consists of two R10000 microprocessors
with 4 MBytes external second-level cache each, one HUB ASIC, and local memory. Two pro-
cessors share the same memory portion through 780 MBytes/s peak. Two node boards are
connected by a six-port router unit. The processors run at 195 MHz. They are able to exe-
cute two floating-point operations per cycle. Each processor contains a 32 KBytes two-way
set associative primary cache, and a 32 KBytes two-way set associative instruction cache. The
main memory is located in a single shared address space, hence the Origin2000 is capable to
run large multi-threaded applications too. For cache coherency a directory-based protocol is
applied, using extra memory hardware which is not accessible by the user.

Picking up real-time information completely differs on the T3E and the Origin2000. On T3E,
there is a recommended intrinsic function _rtc() which returns a 64 bit integer. To get seconds,
this integer is to be divided by the return value of sysconf(_SC_CLK_TCK). On the Origin2000
the recommended code is described in syssgi(2). Its basic idea is to map a 64 bit counter into
the user’s address space via mmap(). A step unit of 800 ns is occasionally not sufficient for
performance analyzing. One gets the following results.

Table 1: Realtime timers

Stepunit | Stepunit~! | Measured overhead to access

T3E 13.3ns 75 MHz < 230ns

Origin2000 800 ns 1.25 MHz < 320ns

3 Performance Comparisons

3.1 PE Performance

To draw an exact picture of the per-PE performance of at least one well known program kernel
on each of the three machines (T3E-600, T3E-900, and Origin2000), 24 variants performing
matrix multiplication have been studied. These variants come from two languages, C, and
Fortran, from either operating over the output matrix itself or over its transposed one, and
from six possible permutations to order the loops.

Here, the results from C are of interest since they reflect some hardware properties. Typically,
C compilers just generate straight code, even with ‘~03’. On the other hand, current Fortran
compilers try to recognize patterns to replace them by highly-optimized code sequences to
get, at least, one floating-point instruction per cycle!. The MFLOP rates are depicted here
are based on 2n3 operations, where n denotes the dimension of the nxn—matrices. What we
should see is that the MIPS R10k processor gets high profit from its 4 MBytes second-level
cache. The curves for the transposed case look similarly, except that prefetching does not
longer help in some cases.

The Fortran90 examples give an impression of the excellent T3E compilers, even so the ob-
served compile-times are often many times longer than typical others. Bad loop orders are
clearly recognized and replaced by the optimum one. One more detail is of interest here. Once
started on the T3E application nodes, repeated executions exactly show the same behavior
with respect to their time consumption. This is different from the situation on an Origin2000
where the reproducibility is on a lower level.

Summarizing here, the per-PE performance of a real application is not predictable. It strongly
depends on the problem and on the code design. On the Origin2000 one has to specify, at least,
‘-03’ to get results which are comparable with T3E performance values. In future, program
developers still should think about using the Fortran dialect Fortran90 as the implementation
language to get the best performance on such HPC systems.

!The results represented by figures 1 ...12 are based on UNICOS/mk 2.0.3.23, with C 6.0.2.1, and F90
3.0.2.3, and TRIX64 6.5, with C 7.2.1, and F90 7.2.1. All the compilers have been invoked with ‘-03’ only,
whereat the SGI compilers were under control of ‘abi=n32:isa=mips4:proc=r10k’. IEEE-754 Double Precision
has been used as the floating-point number format.

3]
o
3]
o

N
o
N
o

a[i][K]*b[K][j] / MFLOPS
S

a[i] [K]*b[K][j] / MFLOPS
w
o

ik | ijkeee |
ikj e ikj e

20 jik << 1 20 jik <
jKiaas jKians

£ 10 Kij e ¥ 10 Kij e |
= Kji > = Kji o»
= 2am006, Aug 23 15:06:57 1998 = 2am006, Aug 23 15:06:57 1998

00 100 200 300 400 500 600 700 00 100 200 300 400 500 600 700

Matrix Dimension

Figure 1: C-coded matrix multiplication on
T3E-600 with streams off

Matrix Dimension

Figure 2: C-coded matrix multiplication on
T3E-600 with streams off, transposed case

80 80

70¢ 1
60 1f

50 {7
ijk see
ikj e
jik e]
i s
Kij oee |
ki v | Kjii o>

zam003, Aug 24 11:13:52 1998 zam003, Aug 24 11:13:52 1998

| | . , I I , . |
400 500 600 700 00 100 200 300 400 500 600 700

Matrix Dimension Matrix Dimension
Figure 3: C-coded matrix multiplication on Figure 4: C-coded matrix multiplication on
T3E-900 with streams on T3E-900 with streams on, transposed case

ijk eve
ikjore |
jike J
jKiaae

Kijees 7

40
30
20
10

c[il[j]+=a[i][k]*b[K][j] / MFLOPS

c[jl[i]+=ali][k]*b[K][j] / MFLOPS

120 120

[[

o o

S 4 9100+ B

[T [

s =

=] = 80f 1

= ijk oo =z | ik ee

£ ikjeer T g 6oy ikj e]

=3 jik < = jik

= 40 . i T £ 403 AR A M ki]

i S I N ¢ ™ Kij e o M

520 . Kji o 1 = 20f " ki

by 4 rapinzel, Aug 22 21:49:57 1998 = rapinzel, Aug 22 21:49:57 1998
% 100 200 300 400 500 600 700 % 100 200 300 400 500 600 700

Matrix Dimension

Figure 5: C-coded matrix multiplication on Ori-
2in2000

Matrix Dimension

Figure 6: C-coded matrix multiplication on Ori-
gin2000, transposed case

3.2 MPI Performance

The measurements here are based on a kernel application which interchanges messages between
three processes, using the MPI Send()-MPI_Recv() pair, and the MPI_Ssend()-MPI_Recv()
pair, respectively. ‘Normalized” denotes that the measured times have been divided by three.

The protocol for sending/receiving the messages is switched, depending on the message length.
In some cases, this is pretty much optimized, sometimes not. Hence, there is still enough room
for some improvement. In case of the T3Es, the important differences between the results
based on MPI Send() and MPI Ssend(), respectively, cannot be explained in detail here.
Evidently, users should use the synchronous calls wherever possible. A little bit surprising
are the results for short messages, see figures 19 through 24. While the Origin2000 yields

cagen’ estetette
. . sae®

ijKooe

ikj vee

. jik e 1
f jKi s
100 kl] -

: Kii »or

zamO006, Aug 23 15:06:57 1998

N

o

o
T

c(j,i)+a(k,i)*b(j,k) / MFLOPS

c(j,i)

0 100 200 300 400 500 600 700
Matrix Dimension

Figure 7: Fortran-coded matrix multiplication
on T3E-600 with streams off

0

800 T T T T T T
700

)/ MFLOPS
D
o
o

k
o
o
=]

ijK sor

ikj vee

jik <

% e

A jKi ass

-\3’200 ? Kij wee
[t

*b(,

)
RN
S o
S o

T
R e

.

)+a(k,i

Kji »or
=) 2am003, Aug 24 11:13:52 1998
I I

0 100 200 300 200 500 600 700
Matrix Dimension

Figure 9: Fortran-coded matrix multiplication

on T3E-900 with streams on

ijK o
ikjoee]
jik

i ass
Kij es
Kii v T

(N
13
o
T
s

c(j,i)+a(k,i)*b(j,k) / MFLOPS

a
o

rapinzel, Aug 22 21:49:57 1998

c(j,i)

100 200 300 400 500 600 700
Matrix Dimension

Figure 11: Fortran-coded matrix multiplication

on Origin2000

,_.
)

o S

O™ o = ol o

ijkeee |
ikj oer
jik < 7

i’ |
|

N

o

o
T
N

¢ (i j)+a(k,i)*b(j k) / MFLOPS

Kji »or

Zam006, Aug 23 15:06:57 1998

c(i.j)

100 200 300 400 500 600 700
Matrix Dimension

Figure 8: Fortran-coded matrix multiplication

on T3E-600 with streams off, transposed case

estaSeE L uenett
o ijK ove
. ikj e |
ik |

ki aas
Kij === 7
ki
zam003, Aug 24 11:13:52 1998

,

\ \ , \ .
100 200 300 400 500 600 700
Matrix Dimension

Figure 10: Fortran-coded matrix multiplication
on T3E-900 with streams on, transposed case

2%
LN oot
3* F s

w
o
o

N
13
o

N
o
o

ijk eve
ikjorr |
jik

jKi asn
Kij aee
Kji v T

rapinzel, Aug 22 21:49:57 1998

(N
13
o

-

i

o

o
T

c(ij)+a(k,i)*b(j k) / MFLOPS

o
o

c(i,j)

o
O v oot e

100 200 300 400 500 600 700
Matrix Dimension

Figure 12: Fortran-coded matrix multiplication

on Origin2000, transposed case

reproducible values with small standard deviations, the round-trip times strongly varies on
the T3Es. Nevertheless, the slope of the average curves of the T3Es is significantly smaller
than that of the Origin2000. Using the MPI_Send()-MPI_Recv() pair, the MPI point-to-point
performance of the Origin2000 is of the same order as the one of the T3E-600, except for very
large message lengths. It is less than the performance of the T3E-900 at all. With respect to

this pair, the values agree with [4].

Summarizing the measurement values, the great question is why the overall performance of
the Origin2000 is still pretty low even if a synchronous MPI Ssend() is used while the latter
boosts the performance of a T3E by a factor of 2. On the other hand, on T3Es, the MPI
implementation should silently change to synchronous mode in case of messages which are
large enough, even if the user has invoked MPI_Send().

MPI message length (bytes)

g

g

=300 T T T T

p=

e 250+ 4
E]

[

o 200 - 4
§

= 150

3

éloo* [Maximum 7
8 Average e
5 50 Average-Sigma-== 7
g zam006, Aug 29 19:05:09 1998

E 00 50000 100000 150000 200000 250000
[=}

z

Figure 13: MPI point-to-point communication
on T3E-600 with streams off, long messages with
MPI _Send()

@

g

=300 T T T T

p=3

=250 E
=3

[

© 200 q
§

< 150 R
k=] el

100 £, ' N Maximum - |
§ Average «»
- 50 Average-Sigma == 7
g 2amO003, Aug 24 11:06:05 1998

E 00 50000 100000 150000 200000 250000
’g MPI message length (bytes)

Figure 15: MPI point-to-point communication
on T3E-900 with streams on, long messages with
MPI_Send()

MPI message length (bytes)

@

g

=120

z

T100

>

e

o 80

=

2 6oH

=

2

g 40 Maximum « |
c

s Average -
= 20 Average-Sigma:= |
g rapinzel, Aug 23 22:05:08 1998

E % 50000 100000 150000 200000 250000
=)

4

Figure 17: MPI point-to-point communication
on Origin2000, long messages with MPI_Send()

3.3 PVM Performance

w

=]

=]
4

MPI message length (bytes)

0

I

=

2

E vggr

o250 - Lo i
S B

e

o 200 [E
E

= 150 - 4
§ T

%100’ 1 ' Maximum v |
c]

8 " Average «
5 50 Average-Sigma = |
g 2amO006, Aug 29 19:05:09 1998

E 00 50000 100000 150000 200000 250000
o

z

Figure 14: MPI point-to-point communication
on T3E-600 with streams off, long messages with
MPI_Ssend()

N w
a =]
=] =]
T
{
L

N
o
=]
T
o
L

[
o
=]
T
-

v Maximum v |

¥ Average s
Average-Sigma ===

2am003, Aug 28 21:51:51 1998

0 50000 100000 150000 200000 250000
MPI message length (bytes)

a
=]
-

o

Normalized bandwidth while round trip (MB/s)
=
o
o

Figure 16: MPI point-to-point communication
on T3E-900 with streams on, long messages with
MPI_Ssend()

@

g

=120

Z

=100

3

2

o 80

=

Z 60

=

g

£ 40 Maximum + |
=4

s Average s
5 20 Average-Sigma = |
g rapunzel, Aug 29 17:58:49 1998

E % 50000 100000 150000 200000 250000
=}

4

MPI message length (bytes)

Figure 18: MPI point-to-point communication
on Origin2000, long messages with MPI_Ssend()

The measurements with respect to PVM are based on a kernel application which is similar to
that for MPI. It uses the pvm_psend()-pvm_precv() pair.
SGI has replaced the whole PVM in July 1998 with the result that the communication rates

of the current release 3.1.1.0 with MPT 1.2.1.0 (3.3.10) are the same now as these of the open
release 3.4betab. PVM seems to be still not working together with Miser.

As shown in figure 27, one has very short startup times on the T3E-900. This is surprising
because they are shorter than the MPI startup times.

70 ;

60 o

50 . Pk

40 R L]
it

w
o

Average+Sigma =

Normalized round trip time (us)

203+ 4
; Average e
10 Minimum s
zam006, Aug 29 19:05:09 1998
. . , . .
00 256 512 768 1024 1280 1536

MPI message length (bytes)

Figure 19: MPI point-to-point communication
on T3E-600 with streams off, short messages with
MPI_Send()

A o o N
o o o o

w
o

Average+Sigma -+ |

Normalized round trip time (us)

20 (i
- Average s
10 Minimum s 4
2am003, Aug 24 11:06:05 1998
. . | . .
O0 256 512 768 1024 1280 1536

MPI message length (bytes)

Figure 21: MPI point-to-point communication
on T3E-900 with streams on, short messages with
MPI_Send()

70 T T T T T

60]

50]
o e A

40 ot A

w
o

Average+Sigma == |

Normalized round trip time (us)

20
Average v
10 Minimum s
rapinzel, Aug 23 22:05:08 1998
00 256 512 768 1024 1280 1536

MPI message length (bytes)

Figure 23: MPI point-to-point communication
on Origin2000, short messages with MPI_Send()

-~
o

\”:_l 60
£ 50
o
E 40
=}
c
g 30
T 20 r Average+Sigma - |
T Average «-
£ 10t Minimum s 4
2 zam006, Aug 29 19:05:09 1998
.
00 256 512 768 1024 1280 1536

MPI message length (bytes)

Figure 20: MPI point-to-point communication
on T3E-600 with streams off, short messages with
MPI_Ssend()

~
o

@
o

o
o

N
o

w
o

Average+Sigma - |

Normalized round trip time (us)

20
Average ss
10 Minimum s 4
zam003, Aug 28 21:51:51 1998
. , , . .
0O 256 512 768 1024 1280 1536

MPI message length (bytes)

Figure 22: MPI point-to-point communication
on T3E-900 with streams on, short messages with
MPI_Ssend()

~
o

— B R e i

g 60 o

£ 50 i

e

E 40 4

o

5

3 30+ q

E 20t Average+Sigma = |

K Average s

£ 101 Minimum s

g rapunzel, Aug 29 17:58:49 1998
00 256 512 768 1024 1280 1536

MPI message length (bytes)

Figure 24: MPI point-to-point communication
on Origin2000, short messages with MPI_Ssend()

Remains to give some coding hints. Interchangeable PVM codes should not contain pvim_halt()
and pvm_start_pvimd() calls. On T3Es, these routines make no sense, except the application
should run on the command nodes which is a bad intention. On the Origin2000, the pvim_halt()
call does never return currently, and the group server still core-dumps, when remotely ac-
cessed, fortunately, after the application has finished. On a T3E one should branch around
pvm_spawn() which has no meaning there. There is an appropriate stub in the library. At
least on SGI hosts, MPI - as the emerging standard for message-passing applications - should

be used instead of PVM wherever possible.

A
1)
o

A
N
=]

=
o
)
T
i
4
)
=
o
S
T
.

@ ®
o o
T T
L L
@ ®
=] =]
T T

L

IN

o
T

IN

o
T

Maximum v |

Average +ee

Average-Sigma = |

rapinzel-pvm-3.3.10.5gi, Aug 23 17:48:49 1998

0 5000 10000 15000 20000 25000 30000
PVM message length (bytes)

Maximum v 7

Average «»

Average-Sigma-== 7

2am003, Aug 24 11:09:19 1998

5000 10000 15000 20000 25000 30000
PVM message length (bytes)

n

o

n

=]
T

o

o
=)

Normalized bandwidth while round trip (MB/s)
Normalized bandwidth while round trip (MB/s)

Figure 25: PVM point-to-point communication Figure 26: PVM point-to-point communication
on T3E-900 with streams on, medium size mes- on Origin2000, medium size messages
sages

70 70 —
Y

7 60 g 2 60 i .-‘::'n,fir;,. o T
Yy Yy o N I o ped R nr
250 1 £ s0 TS P e
s s L b
£ 40 1 £ 40 g
kel e kel
S e . ﬁl:i:-& 5 30 4
g 30 s pai S 8
§ 20 Average+Sigma E 20 Average+Sigma === |
= Average e+ 5 Average s+
€ 10 Minimum s | E 10 Minimum s
% 2am003, Aug 24 11:09:19 1998 g rapinzel-pvm-3.3.10.sgi, Aug 23 17:48:49 1998

% 256 512 768 1024 1280 1536 % 256 512 768 1024 1280 1536

PVM message length (bytes) PVM message length (bytes)

Figure 27: PVM point-to-point communication Figure 28: PVM point-to-point communication
on T3E-900 with streams on, short messages on Origin2000, short messages

3.4 Communication-to-computation performance ratio

To guess the communication-to-computation performance ratio of the T3E-900 and the Ori-
£in2000, the runtime behavior of an adapted version of the well known 2D-decomposed Jacobi
iteration MPI example code [3] has been investigated which comes with the VAMPIR perfor-
mance analysis tool [5].

Figure 29 shows the excellent communication patterns produced on a T3E-900, running Jacobi
iterations. The time line goes from left to right. Time sections where one of the processors
stays in the application code are colored with blue here, yellow is for different MPI-Sendrecv()
calls, and red for MPI-Allreduce(). MPI-Allreduce() sends and receives 8 bytes, i.e., very
short messages, and, only MPI-Allreduce() is discussed from now. Since we need average
values below a mean per-processor communication rate, B is introduced is determined by

2l(p—1)

By =
1 7

[is the message length in bytes, with [=8 Bytes here, p is the number of processors, with
p=>50, and ¢; denotes the average time one of the processors spends in the MPI-Allreduce()
routine. With ¢; =686 us from VAMPIR one gets B; = 1100 KBytes/s.

In case of a dedicated Origin2000, the application code runs about two times faster, and
MPI-Allreduce() this needs about twice the time of a T3E-900. Although the program runs

- uamr =

1.6325 1.634s 16365 1.6385 1.6is
Process :
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process

WHPI_Allreduce
HPI_Sendrecy
BCalculation

Figure 29: One of the Jacobi iterations (NX=1000
cessors of a T3E-900

=

, running on 50 pro-

.) 15

1,538 1,545 1.542s 1,544 1,546 1.548s

Process 0 109 SHEEFI NSO AN L | 179 SUEEFZDM | 129 HPI_ALLRET) 123 BPL_ATIreduce
Process 1 12 UECEANMNSOINCTETER 125 129 SUEEROTNMSO (GNCTLA TN 125 SUEEEPIMMN IF1 Sorcrecy
Process 2 123 SUEEPATNMNNEOI [ONINGSLeal | 125 SUEERTM | 120 SUEEGoD v (IR (0so0 | 129 SUEEFQDI "Co1culzticn

Process 3 129SHEEPRTNINNNSOT NN | (124 SHEEPPDNSNNN | 129 SHEEPRDNIN N SOL[FUC NN 129 SHEERSINNNNNN |
Process 4 123BUEEPADIS NS0T [ICNII A SUEEPED

Process 5 | GHEEFRDNSNNNSUIWINETTE| 1(9 SHEERIDNN

Pracess B IMPT_ALLREDUCE SUEEPZD

Process 7 ALLREDICE SHEEPZD

Process 8 SUEEPZD

Process 3 1ZHSEERSIN

Process 10| 129 | SHEEPED

Precess 11 123, SUEEPZIT |

Process 12 }Pi_ALLREDL
Pracess 13 TPI_ALLREDUCE |
Process 14123

HP1_ALLRETUCE

=

Process 15 |]
Process 16
Process 17 }P1_ALLREDUCE

I
P~
i S S B B I BEEE B

| TPL_ALLRED:
== B P ALLREDUCE ke
TPT_FLLREDICE

Process 18 SHEEP2D 1 301NN

Progess 19123 SEEPZD 129 SHEEP2DT |
Process 20 ISMEEP2D SHEEPRII 129
Process 21 |GUEEPZD 129SHEEPD
Process 22 143 SUEEPZD HPI LIC 29 SUERPD
Process 23 | SWEERZD
Process 24 129) SUEEP2DT T
Procsss 25 YO | SHEEPZDMMNN 123

ALLRED!

Process 25
Process 27 SHEERSDINISOL T |

o
&
3

Process 28 VSMEEPZD SHEEFED 129
Process 71 HEPE)NINNSON BRGIENNS | |SUEEPZDMM SEED
Process 30 |SHEEPZD SHEEPD
Process 3 [T [R
Process 32 ISR o
Process lSuEEP2D SRR
Process 3 [SUEEPRT] 129
Process 3 e \

Process 35
Process 37
Process 33
Process 33 125 SHEER2D RS0 1N R
Procsss 40]

III m

&

Proess 41 |
Process 42
Process 43 |
Process dd
Process 45

o
2

B

Process 46128 HP)_ALLRE DU
Process 47 129 HPT_ALLREDUCE
Process 48 2 3 |

,_\
BES
B35

HPT_ALLREDL
Process 49 FP1_ALLREDUCE

Figure 30: One of the Jacobi iterations (NX=1000), running on 50 pro-
cessors of a dedicated Origin2000

faster at all, roughly half of the whole time is spent in the communication routines. With
t1 = 1590 us from VAMPIR, B; equals 480 KBytes/s.

Considering only MPI-Allreduce() in case of the Jacobi iteration MPI example code, the
communication-to-computation performance ratio of the T3E-900 is about four times the
appropriate value of a dedicated Origin2000. This performance ratio is suitable to guess the
parallel efficiency of a given application, using a certain number of processors.

4 Scheduling Aspects

With respect to scheduling, we should distinguish between job scheduling and task scheduling.
In principle, both of them have to solve discrete optimization problems. The job scheduler has
to reorder jobs with well defined resource requirements to start them preventing any resource
conflict.

On T3Es, the optimization problem of the job scheduler has two variables, the number of PEs
and the time. On shared memory machines, there is one more variable, which is the memory
needed to execute the job. Assuming that the job scheduler has done its work, i.e. there is a
plan of action, the question is how to enforce that this plan is executed in time. A common
way is to remove all the interactive load from the machine. Interactive load cannot be taken
into account since its resource requirements are unknown and strongly varying. Another way
is to qualify the task scheduler to distinguish between task objects which are part of the plan
of action or not. In figure 31, mission critical jobs are blue, green, and yellow, the red part
denotes interactive load which is running under time-sharing conditions, using only resources
which are not needed by the others. One should ask the question here whether it is possible
to make all the pages sticky which are associated with the batch jobs.

Clearly, writing a task scheduler which is able to distribute thousands of task objects over
hundreds of processors, distinguishing between mission critical tasks and uncritical ones, is
one of the pretty big problems of our days. Being successful here, large application servers will
win over clusters of SMP nodes, and, scientific users will win too, because they can have lots
of PEs and large memory portions at the same time. Miser is a first step into this direction;
nevertheless, Miser still has too many restrictions today. It will be the task of the next months
for all application groups world-wide to give input about important requirements for effective
scheduling issues back to the vendor to get the next generation of system software on SGI
hardware ‘just right’.

Figure 31: One possible scheduling concept for large shared
memory application servers

10

5 Sharing Cache-Lines

For the memory access conditions which a single Origin2000 processor does have far from
saturation effects, see the discussion in [6]. Like the Origin, the SGI/CRAY SN-1 machine
is a shared memory system, which will allow to run large multi-threaded applications too.
Explicit multi-threading is not very common in the field of scientific applications. Moreover,
multi-threaded applications matter little to T3Es. Even so, a kernel has been written to study
performance degradations caused by concurrent write access to data which are located in the
same cache line. Figure 32 shows the result of the 40 processor multi-threaded kernel in case
of non-shared cache lines. It has run under Miser to enforce its execution on top of more than
120 per cent user load base.

The time runs horizontally for each thread from left to right. One color change from blue
to yellow and back denotes the same portion of work. The work itself is to increment an
unsigned short integer ignoring wraparounds. Unsigned short integers have been taken to
ensure that one cache line is capable to contain all of them. After 25 portions of work, there
is a barrier which synchronizes all the threads. Despite of some disturbances, the execution
pattern is very regular. Figure 33 shows the result using the same kernel, expect that all the
40 unsigned short integers are localized in the same cache line. It seems that one can see
the hardware of the Origin2000, two threads are much more faster than the others, perhaps,
they are running on the processors of that node board which contains the memory where the
origin of the cache line is localized. After these two processors have finished their part, all
the others get able to accelerate their work. The more threads finish their work, the more the
remaining threads increase in speed.

Thread 0 IFIFFIFEIEERRIERRNER TRRRIRERRERR Ry e
Thread 1 FFEFIFEETEEERTEERERER TRRRRRRRRRR ey fennnn e nnennnnn
Thread 2 II0L DRORRRRERRRRERID RRRRRERRRRRRIRRRNERRRRRE NI iR men e e e e e e e e e ey tnnnnnnnnnnnnn

Thread 39 TRRLRERER R e rennnnnnnnnnnnnnnnn

1.3 seconds

IR
I
Thread 3 TRRRRRRRRRRDRRRRRRRRRRRED RRRRRRRRRRURRRRURRRRTRInn RRRRRRRRRnn e ey ey
Thread 4 TRRRRRRRRRRRRRRIRRRRIRIRD RRRRRRRRRRRRRRRRIRRnnnnny RRnnnn e e e ey v
Thread 5 TRRRRRRRRRRRRRRIRRIRRRRRD RRRRRRRRERRRRRRRRRIRRnRn e e e e e r ey
Thread 6 TRRRRRRRRRRRRERRRRTRIRRRD RRRRRRDRRRRIRRRRIRRRRNnEn RRRRRnn e e ey e
Thread 7 TRRRRRRRRRRRRERRRRTIRIRRRD RRRRRRDRDRRERRRRIRRRRERRD RRRRRRRRRRn ey e e ey
Thread 8 TRRRRRRRRRRRRRERRRRRRRRRD RRRRRRRRRRURRRRRRRIRRnnnn R e e e e e AR
Thread 9 TRRRLRRRERRRRERRRRIRRRRND RRRRRRRRRRRRRRRRRRRntnnn RRRnnn e e e e ey ey
Thread 10 TRRRRRRRRRRRRRRRRRRRRRRDD RRRRRRDRRRRERRRRRRRRRRRRn RRRRRRRRRRn Ry vy
Thread 11 TRRRRRRRDRRRRDRIRRRRIRIND RRRRRURRRRERDRRRRRRRRRRND RRRRRRRREREn ey tnennn ey
Thread 12 TRERRRRRRRRRRRERRRRIRRRRD RRRRRURRRRURRRRURRRRRInt RRRRRRR e ey veennneennnnennn e
Thread 13 TRRRRRRRRRRRRRRRRRRERIRED RRRRRRRRRRRRRRRRRRRRRERRn RRRRRRRn iR ey rennnn ey
Thread 14 TRERRRRRRRRRRRRRRRTIRIRRRD RRRRRRRRRRRRRRRRRRRRRIREn RRRRRRRRRnn ety sennnnnnnnnnennnnnnnnn
Thread 15 TRRRRRRRRRRRRRRIRRRRIRIRD RRRRRRDRRRRERRRRIRRRRRnE RRRRRERR R e ey ey
Thread 16 TRIRIRRRRERRRERRRRTRIRRDRD RRRRRRDRRRRERRRRIRRRRRREn RRRRRRRRRRn Ry vnennn e
Thread 17 TRRRRRRRRRRRRERRRRERIRRDD RRRRRRDRRRRRRRRRIRRRRInn RRRRRRR R ey tnennn ey
Thread 18 TRIRRRRRRRRRRERRRRIRIRRND RRRRRRERDRRRRRRRRRRRRRnRy RRRRRnn e e e ey veennnrennn ey
Thread 19 TRERRRRRRRRRRERRRRTRIRNDD RRRRRRRRDRRRRRRRRRRRRNnnn RRRRRnnn e e e ey vennnnenn e
Thread 20 TRRRRRRRRERRRRERRRERRRRND RRRRRRDRRRRERRRRIRRRTRInn RRRRRnn e e ey e
Thread 21 TRRRRRRRRRRRRRRRRRRIRRRRD RRRRRRDRRRRRRRRURRRRRRRND RRRRRRRRRREn Ry vy
Thread 22 TRERRRRRRERRRRERRRRERRRDD RRRRRRDRRRRRRRRRRRRRRRRnn RRRRRn e e e ey vennneennnnennneennn
Thread 23 TRERRRRRRRRRRRRRRRRIRNRED RRRRRDRRRRERRRRURRRRTnInn PR RRn e ey e
Thread 24 TRRRRRRRERRRDRRRRRRRERERD RRRRRRRRRRERRRRRERRRRRRIn RRRRRRRRntne e ey snnnnennnnnennnn
Thread 25 TRRRRRRRRRDRRRRRRRRRTRRND RRRDRRRRRRRRERRRTRIRRnnRn RRRRRRRnn e e ey e e
Thread 26 TRRRERRRRRRRRRRRRIRIRRRDD RRRRRERRRRRRRRRRRRRRRRRRn RRRRRERRRRnn ey tnnnennn e
Thread 27 TRRRRRRRRRRRRRRRRERIRRRDD RRRRRDRRRRRERRRRRRTRInnnn RRRRRnnn e e e ey
Thread 28 TRRRERRRRRRRERRRRRRRRRRDD RRRRRDRRRRRRRRRRRRRRRRnEn RRRRREnn e tnnnennn ey
Thread 29 TRRRRRRRRRERRRRRTIRRRRRRRD RRRDRDRRRRRERRRRRREnRnnnnn PR e e et
Thread 30 TRRERRRRRRRERRRRRRRRRRRRD RRRRRRRRRRRTRRRRRRRRRnnRn RRRRRnen e e tnnen e
Thread 31 TRRERRRRRERRRRRRRRRRRRRRD RRRDRDRRRRRRRRRRRRRRRRnEn RN e e e e e e e
Thread 32 TRRRRRRRRRERRRRRRRRRRRIRD RRRRRRRRRRRRRRRRRRRRRRRRn R e e e vy
Thread 33 TRRERRRRRRRRRRRRRRRRRNERD RRRRRRRRRRRRRRRRRRRERnnnn PR e tennnn ey
Thread 34 TRRERRRRRERRRRRIRRRRRRNND RRRRRERRRRRRRRRRRRRRnnnnn RN e e tnnen e
Thread 35 TRRERRRRRDRRRRRTRERRRERND RRRRRDRRRRRRRIRRRTIRRRnnnn RN RREn e e e tnnnn e
Thread 36 TRRERRRRRERRRRRRRRRRRRRRD RRRRRRRRRRRRRRIRRRRRRRnnt RRRREREn e e tnnen ey
Thread 37 TRRERRRRRERRRRRRRRRRRRRRD RRRRRERRRRRRRIRRRRRIRRRnE RRRRRRER R ey tnnenn ey
Thread 38 TRRERRRRRRRRERRRRRRRRRERD RRRRRRRRRRRRRRRRRRRRInRnn RRRRRnn e e tnnenn ey
[ARRRRRRNRURRRNNNN RN RN
T

Figure 32: Runtime behavior of a multi-threaded kernel without data access collision

11

Thread O BREREIRRRRININIRIRNRIINIE R R RERRRRRRREIRIHIIIE R R R RN R e R R R e
Thread 1 ERRREIERERIIIRIRININENM R R R RENERERERIRNINIIEI RN R R RN RRR RN B N R nimm

Thread 2 [N Uy FRRRRRRRRRRRNInnnnE PR e
Thread 3 [N LT FERRRRRRRRRRInnnm e R e nnnnnnnnnnnnmm
Thread 4 BTRRRRILIRRRRRID 0R0EREDL R R R R R R0 [R R RRTNRNNRINNY TRRRRIRRRnnnnnnnnnnn
Thread 5 TRRRRIRRRRIRNINIRIND ERERRRIRORRLINERNOEN RRRRRIRERRERRIRNRRINHIIE R R RRRRRnnnennnnnm
Thread 6 BRRRIIRRRRDIRNRRNNINIIE R R RRRRRRRRRORINRIIIIE R R RN RRRRInnnnInE e en e
Thread 7 TRRREIRRRRLIIRIREREINIIR D DR MR BTN [e R NNEERRRRNNLE TR RRRRRRRIR RN
Thread 8 IEEEEEERIMIIH TRRRRIRIRRLInnmnn PR Enenn e e nrnrnrnnenm
Thread 9 BTRRRBIIRRRELIIIINNINDD RR R R RTRE W TRRRRERRR RN e e nnnnnnnnnnm

Thread 10 ERRREIINNRNINNINENINN EREENLOEEREIONOINN [N RN N RN N NN N ARN RN RN R AR NNITIT
Thread 11 ERRRRIRRRRLIRRLINIRINN RRRRRERERRRRRRTIEHIIIIIE R R R RRRRnnnnnnnInErr R
Thread 12 ERRREIRRRRINIRIRRRREHIIR R RIRRRRREIRRREINEIIR RN R RERRRRIRIRE e R e R nmn
Thread 13 BRRRERIRDRINIRRRRNINIRIIE DR RRRRRRRIRIRIINIINID NI R AR RN RRRRIRnnnT e et
Thread 14 BTRRRRIRRRRNIRRRRIRNINIIE DR R RRRRRDIRRININRIIHINIE R RN RERRRRRRRInEInE R e n R
Thread 15 BRRREIRRRRENIRIRRRNINIIIE R R RERIRRRRRERIRHIIIIR RN R RR RN E e rRrnnnnnnennnnnnn
Thread 16 BERRREIRRERLIIRRRRIRINIIR R RN RRRERRIRRIRINEHIIIE R R RIRRRRIRnInnE R R
Thread 17 BRRRIIIRRRNININRRININD RRORERRORRRRRRRRIIIRHIIE RN R RRRRRRIRInnnnnnE R R R nennnnnnnnnnnnnnmn
Thread 18 TRRRILIRRREIIRERRNNIIINE R DR RORRRRRIRRRIRERIIE R R RN n iR e R r R
Thread 19 BERRRIIRRRREIERIREINININE R DR RORRIRRIRRRRINEHIINE R RN RRRRRRI R e R n et mmeey
Thread 20 BERRRRIRRRRRIIRIRNIRENIIR R DR RERERRRNIRNIRIIIINE RRRRIRR R renerennnenennnnmnm
Thread 21 ERRREIIRDRNININDNINN] ERRERROTRERLINEOmn 0n wmey [RR R RENARRRRERRARTRIIIE
Thread 22 BRREREERRRRIRRERRIRIRINIR R RN RRRRRRRIRRRIEIRIII R R RN R RN PR e
Thread 23 BRRREIRRRRNIRRIRNLINIIIR DR R RIRDRRRIRRRHEnnnnrnnnnnnnnnnneeen e
Thread 24 BRORTLIRRRRITRRRREREEIIER R R RIRRRRRIRRRIEEIE R R RRRnRnnrnnenr eepn e
Thread 25 BRERELERRROILININEDNDL BRRRRRERERORRRRERINIHININE R R RRRRRRRRRRnnnnnnnE e n Rnennennnnnn
Thread 26 BRRERIRERRRIRRERRIRIRII R RN RORRERRRIRRINIEHIIN R R R R R e e e e
Thread 27 BRERRIRRREIEIRIRRRREEINE R RN RRREIRRIRRRRNIREENOE RN RN R RN R RN RRRRnrnm

Thread 28 BREREIRRRRTUIRRRRIRIEIIE RN R RERDRRREREREEENI R R R R R R e e e
Thread 29 BRRRRLIRRREINEDRRRINIONE R R R RRRRRRRRRIRIREIE RN R RN R en e e nnnnnm
Thread 30 BERBROIRRRRINIRERIRREEIIERRRRRRERRRInRInnnE e e e e
Thread 31 ERRRRIRRNRINRRRRERRINIIIE R RERRRRRRRINIININNE R RN R RN R RR R e R R nnnnnnn
Thread 32 ERRRRIRRRRRHIRIRRRRRNINIE D R R RRRERRERRERHIRIHIIR RN RRRRRRL IR e R

Thread 33 BRRRIRERRRRIRRRRRRRRIIIE RN RERRRRRRRRRIREIRnnnn B0 0 E i TRRRRRRRRRRRnnnnnnnm
Thread 34 BTRRREOIRRRRINRNIRERNIROIE RN RRRERRERRIRIIREEEm R R R RN R R RERRRRRREERRnE

Thread 35 ERERERERRERIlI [RN R R RN RN RN N R [N ERERERNRRRNRRNRILD
Thread 36 TRRREIRERDEIIRIRIRNININE R R R AR DR R IR U TR RRRILRnnnnnmm
Thread 37 BFEERITEEERTERERW NN RN RN N R N R RN NN RN RN NNNARID
Thread 38 BRRIRIRRRRINIRERRRRIEIIE RN RRERDRRRRRERTEERIHn BN R R EEE R TRRRRRRRE R

Thread39 TRRRRLERERRIIRENENNIDIN R DR RORNDRORRRNRIREEnE R R R RN RN
171 seconds

Figure 33: Runtime behavior of a multi-threaded kernel with maximum data access collision

Summarizing here, shared memory machines do not only allow to write slow code which is
based on the message-passing parallelism, one has also the freedom to write slowly running
multi-threaded applications. On the other hand, in normal situations the overhead introduced
by this situation of ‘wrong-sharing’ data is - because of the still working principle of ‘locality’
in most cases - not a major problem. Nevertheless, if applications are developed, e.g. based
on OpenMP, the user should carefully look to the time-consuming program parts.

6 Conclusion

We have compared the CRAY T3E, i.e. the massive parallel machine of these days, and the
SGI Origin2000, a new-style shared memory system. Both systems are based on excellent
hardware concepts. The merged SGI/CRAY machine of the future will be closer to an Ori-
gin2000 than to a T3E. Nevertheless, all excellent parameter values of the T3E, the transfer
bandwidth, for example, should be carried on - and somewhat improved if possible - in the
new architecture. IRIX, as the operating system, has done important steps to control the
complicated situation of large shared memory application servers. Nevertheless, it still has
to be more and more improved to ensure that, once, the job scheduling system will have the
power to enforce its plan of action via task scheduling mechanisms in the presence of any
interactive load.

12

References

[1] ANDERSON E., BROOKS J., GRASSL C., AND SCOTT S.: Performance of the CRAY TSE
Multiprocessor. Proc. Supercomputing’97, San Jose, USA

[2] Dowp K.: High Performance Computing. O'Reilly & Associates, Inc., Sebastopol, 1993.

[3] Grorp W., Lusk E., AND SKJELLUM A.: Using MPI. MIT Press, ISBN 0-262-57104-8,
1996.

[4] LueckeE R.G. AND CovLE J.J.: Comparing the Performance of MPI on the CRAY
T3E-900, the CRAY Origin 2000 and the IBM P2SC. lowa State University, April 1998.

[5] NaceL W.E., ArRNoLD A., WEBER M., HoppE H-C., AND SOLCHENBACH, K.: VAM-
PIR: Visualization and Analysis of MPI Resources. Supercomputer 63, Vol.12, No.1,
pp. 69-80, 1996.

[6] SEIDL S.: Access Delays Related to the Main Memory Hierarchy on SGI Origin-
2000. http://armoise.saclay.cea.fr/~workshop/Documents/Final Papers/Stephan_Seidl_-
11_Perf opt_1.ps.

[7] SiLICON GRAPHICS INC.: Origin Servers Technical Report. April 1997.

Originally published in Proceedings of the Fourth European SGI/Cray MPP Workshop (Sep 10-11, 1998, IPP,
Garching, Germany), H. Lederer and F. Hertweck, eds., IPP R/46, Oct 1998, pp. 6-19.
Also available as internal report ZHR-IR-9803.

13

