
Access Delays Related to the
Main Memory Hierarchy

on SGI Origin2000

S. Seidl

Center for High Performance Computing (ZHR)
Dresden University of Technology

D-01062 Dresden, Germany
E-mail: seidl@zhr.tu-dresden.de

Abstract

Traditionally, performance characteristics of machines have been done by compar-
isons of the run time behavior of well-known applications. An alternative approach
taken here consists in creating artificial kernel applications whose only task it is
to determine one particular machine parameter in isolation. Findings based on
this method, at first glance, may not appear as practical as those based on the
former one, but are actually more fundamental and, therefore, more predictive. In
this paper, memory delay times were investigated to determine the performance
degradations caused by access to far-off memory sections. The elementary model
chosen here assumes that the entire memory is divided into sections with different
access levels depending on the respective processor’s location. The properties of the
different levels can be described sufficiently by two parameters, i.e. first, the size of
the corresponding memory section, and second, the time that elapses before data is
loaded from that section. This model makes it possible to deal with expected values
for access times in dependence of the size of the accessed area. A special program
associated with this problem determines a finite set of expected values, integrat-
ing hardware-produced probability density functions via Monte-Carlo integration.
This set of values can also be derived theoretically from the same abscissae using
hardware topology information, but allowing for free level-specific delay times. To
obtain the free parameters, the theoretically gained set is best fitted to the exper-
imental one. Theory and measurement supply impressive results. Agreement and
reproducibility are excellent, at least for the Origin2000.

1 Introduction

The base of the following study was the Silicon Graphics Origin2000 system
installed at Dresden University of Technology (TU Dresden), which has
been equipped with 54 R10000 processors with a 4 MB second level cache
(SL cache) each, 18 GB main memory in total, 150 GB hard disks, and
InfiniteReality2 graphics. The well known overall concept underlying this
machine [2] is promising in many ways; however, one of its prerequisites
would be fast accessibility of the entire main memory, which although locally

1



distributed, can be globally addressed. The main point of the present paper
is the temporal quantification of accesses to data that may be located on
different levels of the memory hierarchy.

The reference to memory delays in the title draws attention to the dif-
ference between actual delays and bandwidths. This problem is disposed of
by relating all the times to the respective hardware-based elementary op-
erations; in concrete terms, this means that the duration of the operations
that the main memory is involved in are based on the SL cache line size,
thus 128 Bytes. Times for accesses to the SL cache itself, however, refer to
32 Bytes, i.e. to the size of an on-chip cache line.

The basic objective underlying the program developed for the required
measurements is the ascertainment of precise expected values of read/write
accesses to certain amounts of data with the best possible predictability of
probability of location. Thus, the exactness of data required for the en-
suing approximation task presupposes an absolutely relaxed machine. The
approximation per se resembles a typical deconvolution problem with a spec-
trometer function naturally not all too well known in detail. Notwithstand-
ing these premises, seven technical parameters have been established for the
Origin2000 from the software point of view, thus calling for a discussion.

2 On the Measuring Program

The program used for measuring was written in C and was normally com-
piled by means of the GNU C Compiler 2.7.2.1 (GCC). The GCC, which
had already been ported onto the Origin2000 by the author much earlier,
generates 64 bit MIPS IV instructions for the R8000 processor so that the
entire main memory can be accessed. This compiler was chosen because it
outputs a very simple code for the important inner loop. In order to study
the impact of new, typically generated R10000 prefetch instructions on the
measurements results, a comparison is planned with the MIPS IV compiler,
which is part of the operating system.

The program is designed to run on different, yet well fixed node boards
from which so-called pathological memory accesses are carried out. Reading
and writing is done in such a way that, e.g. when pulling in a cache line, the
whole spectrum of possible activities gets run. Accesses to remote caches
do not happen so that no numerical values were ascertained for them.

The code freed of most inessentials is shown in (1). In the first place,
the program reads quantity w of a designated working region called window
in the following way. The values used for w here are 1024, 2048, and 4096
Bytes. Subsequently, an outer loop is started, which initially defines the
size a of an accessible region that is called area here. a can then take on
values from 16 KB through 8 GB, which generally cannot be stored in the
home memory of a node board. It is well known that malloc() returns

2



an address in the case of lazy memory management, but that essentially
nothing happens yet. This is also true of the Origin2000. The pages are not
associated with the running process until they are accessed, which happens
during the initialization phase while units are consecutively being written.
In this process the operating system distributes physical pages according to
hierarchy, i.e. the first pages are always located in the home memory, the
following ones on the node board of the same corner, etc. This is important
since the page migration facility does not work yet on the operating system
release IRIX64 6.4.1.

#include "header.h"

void main (void)

{

unsigned long w, i, a, j, jj, off;

double *p, t0, t1, t;

(void) my_input (&w);

for (i = 4; i < 67; i++) {

a = (unsigned long) (4096.0 * pow (2.0, (double) i / 2.0) + 1.5);

a = a - a % w;

p = malloc (a);

for (j = 0; j < a / sizeof (double); j++)

*(p + j) = 1.0;

t0 = my_get_time_user_plus_sys ();

for (j = 0; j < 10240000 / w; j++) {

for (jj = 0; jj < 1000; jj++) {

off = my_irandom () % (a / w) * w / sizeof (double);

(void) my_mem_acc (w / sizeof (double), p + off);

}

}

(void) free (p);

t1 = my_get_time_user_plus_sys ();

t = (t1 - t0) * (double) w / 1024.0e+7;

(void) printf ("w = %lu, a = %lu, t = %e\n", w, a, t);

}

(void) exit (0);

} (1)

After initialization a defined number of randomly selected windows is
read and promptly written by way of sign change. These windows are aligned
and therefore do not overlap. Practically every one of them is dragged into
the on-chip cache as soon as possible and remains there until it gets pushed
out at one point. As driving instructions sign changes are sufficiently fast
so that the instruction queue is soon full, containing outstanding loads. For
relaxation, my mem acc() executes some further operations which, however,
only require communication with the on-chip cache.

3



On the Origin2000 of the TU Dresden, results were obtained as essen-
tially depicted in figure 1.

1M 4M 16M 64M 256M 1G 4G 16G4K 16K 64K 256K

0 µs

15 µs

30 µs

45 µs

60 µs

t(a,w)

a

w

w

 = 1 KBw

 = 4 KB

 = 2 KB

Figure 1: Execution time per window t(a,w) depending on the size of the
accessed area and and the window size. The position of the active processor
may be interpreted as an additional parameter.

Up to 256 MB, the curves correspond to those of typical workstations.
On-chip cache, SL cache and home memory can be clearly identified. The
new fact is that the curves branch off in a variety of ways for very large
areas, typically, at abscissae where the memory size of an hierarchy level is
reached. As soon as the home memory is exhausted, additional hardware
is made use of, which in turn makes for extra costs. The hub is occupied
with something else, the data are run through a standard router, and on the
other side, there is another hub. In summary, one can locate five hierarchy
levels, two more than on normal machines. Now the question is how to infer
the performance of the respective hardware components from the present
results.

4



3 Modelling

The modelling of the main memory accesses of the measuring program takes
account of three different factors. The most important factor here is the
topology, which determines what hardware components the data have to be
pulled through. A secondary effect which has to be quantified can be ex-
plained by the fact that somewhat poorly chosen standard page size default
shows an effect starting from 1 MB, i.e. still within the SL cache. Finally,
there is a vague supposition that starting from about 256 MB some limit
is reached which might be linked to page table size. We will begin with
considerations concerning topology.

3.1 Topology

Modelling the topology is done in analogy to experiment, i.e. based on a
system with 32 regularly set up processors, of which at any one time only
one is active and accesses most parts of the memory. Thus, real blocking
effects only play a minor role. Furthermore, accesses to remote caches are
improbable. Besides, figure 1 expresses that the measuring program cannot
allow for any predictions about access times to the on-chip cache. Losses
through loads from the on-chip cache are added on to program overhead.
Based on these considerations, a 7 level hierarchy is established so that for
the time that the measuring program needs to process an assumed, strictly
localizable window of the size w, the following can be set up.

ttop(p, w, s1...s7) =



t1(w) for 0 < p ≤
∑1
i=1 si

t2(w) for
∑1
i=1 si < p ≤

∑2
i=1 si

t3(w) for
∑2
i=1 si < p ≤

∑3
i=1 si

t4(w) for
∑3
i=1 si < p ≤

∑4
i=1 si

t5(w) for
∑4
i=1 si < p ≤

∑5
i=1 si

t6(w) for
∑5
i=1 si < p ≤

∑6
i=1 si

t7(w) for
∑6
i=1 si < p ≤

∑7
i=1 si

(2)

Here ttop(p, w, s1...s7) represents a fictitious, growing step function, which
for the time being presumes that the data are located in such an ordered
way in the memory hierarchy that the lowest addresses p correspond to the
highest, i.e. fastest levels, and vice versa. In a certain sense, p can thus be
conceived of as a base address to w. The si are the memories physically
present in each individual level. Here s1 must always be equal to 32 KB, i.e.
s1 describes the size of the on-chip data cache. Evidently, the hierarchy level
in-register does not exist here. s2 is equally fixed, amounts to 4 MB and is
a characteristic of the SL cache. All other si depend on how much memory
is mounted on each node board, and therefore vary across measurements.
The functions ti(w) contained in (2) look like this:

5



t1(w) = to(w)
t2(w) = to(w) + ts(w)
t3(w) = to(w) + ts(w) + thh(w) + tm(w)
t4(w) = to(w) + ts(w) + thr(w) + tr(w) + tm(w)
t5(w) = to(w) + ts(w) + thr(w) + 2 tr(w) + tm(w)
t6(w) = to(w) + ts(w) + thr(w) + 3 tr(w) + tm(w)
t7(w) = to(w) + ts(w) + thr(w) + 4 tr(w) + tm(w) (3)

Equations (3) will elucidate the above-made assertions. In particular, there
is no line possible that to(w) would occur in, i.e. the time duration of the
program for the processing of w without accessing the on-chip data cache,
which is the reason why the loads and stores from and into the on-chip cache,
respectively, cannot be taken into account separately using the method cho-
sen. ts(w) are the times which have to pass before the exchange of data
between the on-chip data cache and SL cache has been completed. When-
ever the data are located in the home memory, the hub has to be involved,
which is estimated with thh(w). tm(w) describes the accesses to the memory
chips themselves. In our machine, memory size may vary quite drastically
between node boards. In pilot investigations, it was possible to show that
the measuring program does not react at all to the different installation
states, with the spectrum ranging from 2...8 banks consisting of 32, 64, or
256 MB DIMMs with 16 and 64 MB memory density. Another negligibil-
ity is the assumption that the kernel is completely relaxed at the time of
measurement and that its memory usage in turn remains negligible.

Line 4 in (3) describes the access to the memory of the other node board
in the same corner. Here again the hub is needed for the transition to the
so-called interconnect fabric, for which a router has to be passed in order
to access remote memory via remote hub. Since we have to presume that
the entire hub activities are markedly different from the access to the home
memory and that, besides that, two hubs are involved, thr(w) is set in this
line, with one of the routers at tr(w). The interpretation of the remaining
lines should be evident now. Thus, the last line describes the access to one of
the node boards logically located on the opposite corner. The six functions
contained in (3) are defined in the following way:

to(w) = to,0 + to,1
w

8 Byte

ts(w) = ts,0 + ts,1
w

32 Byte

thh(w) = thh,0 + thh,1
w

128 Byte

6



thr(w) = thr,0 + thr,1
w

128 Byte

tr(w) = tr,0 + tr,1
w

128 Byte

tm(w) = tm,0 + tm,1
w

128 Byte
(4)

Thus, it should be possible to describe some vital parameters of the
Origin2000 memory hierarchy based on ten constants with two constants
associated with the application. In addition, the following state of affairs
needs to be considered. If prefetching is dispensed with in my mem acc()
(1), five of the twelve constants in total disappear in good approximation,
viz ts,0, thh,0, thr,0, tr,0, and tm,0. This is theoretically most illuminating,
as it suggests that delays in their original sense can be neglected in the
Origin2000 memory hierarchy, that is to say whenever not only one data is
accessed. Consequently, what we have here are basically pure bandwidths,
which, of course, transform into delays in extreme cases.

The consequence of this discussion is the following: in the presence of
prefetching, the situation is a quite different one and extremely difficult to
assess. In that case, the five above constants do not disappear at all, i.e.
real delays seem to occur, whose cause has to be seen in the occasionally
jammed data paths, and the fact that more data are moved than necessary.
Doubtless, prefetching is a good thing, yet in this context it was extremely
disturbing, and the search for the cause was very time-consuming. Of course,
the program used cannot supply comparable values to ttop(p, w, s1...s7), since
the concrete location of the data can only be manipulated indirectly. Rather,
corresponding expected values ttop(a,w, s1...s7) are measured, based on

ttop(a,w, ...) =

a∫
0
ttop(p, w, ...) dp

a∫
0
dp

(5)

In principle, (5) transforms the step functions defined by (2) into func-
tions which can be differentiated, and should be predictable from figure 1.
This way, the undesirable dependence on p is replaced by one on a, the size
of the entire accessible memory area.

3.2 TLB misses

The previous paragraph discussed ways of describing the topology inside
the machine. In the following, the point is to track down fudge effects
which may be disturbing the result of the approximation described below.
One such effect is caused by the fact that the 64 entries of the Translation
Lookaside Buffer (TLB) are exhausted so that the information in the page
tables has to be accessed. Interestingly, this happens with as low as 1 MB of

7



administrated memory in our system. It would certainly be sensible to make
the default page size dependent on the size of the SL caches during the boot
step of the machine so that with a data amount of 4 MB, which could still
be located in the SL cache, no TLB misses would have to be handled. In
figure 1, TLB misses can be identified from relatively minor kinks at 1 MB,
particularly for small values of w. This effect is here taken into account
with the following correction term, where the required integration of the
corresponding step function has been carried out manually.

ttlb(a, sp) =

 0 for a < 64 sp
ttlb

(
1− 64 sp

a

)
for a ≥ 64 sp

(6)

ttlb designates the time that the handling of a TLB miss takes, and sp
is the page size, here equated with 16 KB. Through (6), another degree of
freedom, ttlb, comes into play.

3.3 One more Correction

The second and last correction in improving the fitting of the theoretical
curves to the experimental findings has for the time being not been under-
stood yet. Independently, it has proven useful to add the following term:

tpt(a) =


0 for a < 256 MB

tpt
log2 (a/Byte)− log2 226

log2 226
for a ≥ 256 MB

(7)

The pre-factor tpt in (7) represents a last degree of freedom introduced
at this point. For the remainder of this correction, no speculations should be
made. Nonetheless, there are certain analogies to formulae for the number
of operations necessary for the searches in binary trees.

4 Least Square Fit Results

For the fitting of the free parameters to the more than 1000 measurement
points, the following problem was worked on, where i runs across the entirety
of all n values.

n∑
i=1

(ttop(ai, wi, ...) + ttlb(ai, ...) + tpt(ai, ...)− ti)2

t2i
−→ Minimum (8)

Maple V, R3 served as the tool. In order to efficiently face up to po-
tential stability problems, the linear system of equations was built up using
arbitrary precision rational arithmetic, to be eventually solved in standard
floating point arithmetic. Table 1 shows the results gleaned by this method,

8



and the results gained at least appear plausible. The relative error of the
individual value is estimated at 20 percent. A comparison of the values with
those resulting from direct analysis of the hardware are still outstanding.

Table 1: Important hardware parameters of the memory hierarchy of the
Origin2000 system seen from a measuring program point of view

Mnemonic Symbol Value Related to

on-chip cache ←→ SL cache ts,1 53 ns 32 Bytes

local hub for home thh,1 110 ns 128 Bytes

local hub for remote + remote hub thr,1 358 ns 128 Bytes

standard router tr,1 68 ns 128 Bytes

memory + memory controller tm,1 468 ns 128 Bytes

TLB miss handling ttlb 1005 ns 1 TLB miss

2-nd type correction tpt 8356 ns

From the angle of the results of table 1, the curves contained in figure
1 can be interpreted in the following way. Delay times in the accesses to
the home memory are primarily a result of the memory chips. If the home
memory has to be left, data flow via the routers. The latter may be fast;
nevertheless, the concomitant additional hub activities on both sides of these
routers cause noticeable disturbances, i.e. the realization of the protocol.
Accesses to the memories of the node boards located further away do not
impair times significantly any more. This is more clearly indicated by the
depiction of the values contained in table 1 in the form of MFLOPS. Here,
the existence of an infinitely fast processor is presupposed, which executes
sign changes on consecutive floating point data without paying attention to
the possibility of accelerating this task by means of suitable interventions,
i.e. it does nothing but sit and wait for the arrival of the respective incoming
data.

5 Conclusion

With the help of a carefully considered measuring program and a transparent
and manageable theory, seven parameters of the Origin2000 system have
been identified, five of which concern the hardware only. Even if the accuracy
with which these parameters have been worked out may not be maximally
convincing, it will, however, allow for certain simulations that essentially

9



Table 2: Performance limits for consecutive
sign changes caused by the Origin2000
hierarchy level the data reside on

Mnemonic Level MFLOPS

SL cache 2 75.5

home memory 3 20.3

same corner 4 14.5

neighbour corner 5 13.6

next but one corner 6 12.9

spatial diagonal 7 12.2

make for a more intimate, better understanding of the machine than would
have been possible on the basis of the number of wires and the clock rates.
The main reason for this lies in the fact that the measuring program does not
only capture wire bandwidths, but also delays caused by the logic, though
in a rather indirect way.

Other scenarios concerning the measurement of the same quantities may
also be conceivable on the basis of POSIX threads, which would allow for
separating allocation/initialization and access activities from each other lo-
cally.

Acknowledgements

I want to thank Dr. W. Oed from Silicon Graphics GmbH, Germany, for
helpful discussions in understanding many of the details of the Origin2000.
Thanks are also due to Dr. S. Maletti and J. Weller from the
Universitätsrechenzentrum (TU Dresden) for making an unloaded machine
exclusively available for hours on end.

References

[1] Dowd K.: High Performance Computing . O’Reilly & Associates, Inc.,
Sebastopol, June 1993.

[2] Silicon Graphics Inc.: Origin Servers Technical Report . April 1997.

Originally published under http://www.cea.fr/∼workshop/Program.html, 1997.
Also available as internal report ZHR-IR-9701.

10


